Muscular System Notes Part 2: Contraction Physiology

Questions	Notes		
	I. Physiology of Muscle Contraction Motor Neurone		
List the	Skeletal muscles must be Mitochondrian		
steps of			
muscle	(motor neuron) to contract	5	
stimulation	A. Transmission of Nerve Impulse to Muscle	ve	
by a nerve	○ Step 1: Nerve releases a	C	
impulse.	Muscle Fibre Synaptic deft		
	 Step 2: Neurotransmitter causes the 		
What ion is	muscle cell membrane gates to open		
responsible	\circ Step 3: Ions (Na ⁺ & K ⁺) exchange places causing the sarcoplasmic		
tor starting	reficulum to		
a muscle	• Step 4: This release of Ca ⁺ as		
contraction?	the actin filaments slide past the myosin filaments		
	B. The Sliding Filament Theory of Muscle Contraction		
	• a muscle contracts when the	e	
When door	thin filament in the muscle fiber slides over the thick filament		
a muscla	 Activated by and (Ca²⁺) ions 		
contract?	•		
connach	○ Step 1: An influx of Ca ²⁺ causes thick myosin filaments to form		
	with the thin		
Describe	actin filament by exposing the binding site		
the sliding	on actin.		
filament	\circ Step 2: The crossbridges change shape as it \xrightarrow{z}		
theory of	pulls on which 🔹		
muscle	slides towards the center of the sacromere		
contraction.	in the		
	• The distance between the Z line		
	decreases,		
List the	$ z \leftarrow A z $		
steps of	• Step 3: The crossbridges detach from the w		
sliding	actin filament when bonds to myosin		
filament	nead.		
theory.	• Step 4: The gets ready to bond to actin again using		
	All energy.		
	o the cycle is repeated on another site of the actin mainent.		

_

	II. Energy for Muscle Contraction			
	• o Bonds of are broken to			
What type of activities	 Only 4-6 seconds worth of ATP is stored by muscles Three ways for muscle to make energy (ATP) 			
is creatine phosphate used for?	 Creatine phosphate is a high-energy compound to make ATP available for muscles Used for activities lasting	d and is the fastest way		
Does cellular	 ○ Creatine phosphate + ADP → creatine + Creatine phosphate is made when a muscle is at rest 	ATP		
require oxygen?	 Mitochondria uses Mitochondria uses molecules in the presence of oxygen 	ATP Pyruvic acid Fatty acids		
How much ATP is produced during	 Provides most of a muscle's ATP (needs oxygen) Used for activities lasting 	(c) Aerobic mechanism (oxidative phosphorylation)		
cellular respiration?	 Reaction: C₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O + energy 1 glucose = 	Energy source: glucose; pyruvic acid; free fatty acids from adipose tissue; amino acids from protein catabolism		
How long do activities last?	 Reaction that breaks down glucose without using 	CO ₂ , H ₂ O Duration of energy provision: Hours		
What molecule is broken down?	 Used for activities lasting	Glucose Pyruvic acid Lactic acid (b) Anaerobic mechanism (dycolysis and lactic		
voes this require oxygen?	 A marathon runner is exhausted after crossing the finish line because they have depleted not only their oxygen but their glucose as well It takes up to two days to replace all of the glucose in the muscles and glycogen in the liver 	acid formation) Energy source: glucose Oxygen use: None Products: 2 ATP per glucose, lactic acid Duration of energy provision: 30–60 sec		

Muscular System Chapter 7